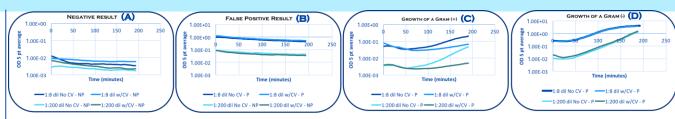


PATHOLOGY

DEPARTMENT SAINT LOUIS UNIVERSITY

Improved Sensitivity for Detection of Urinary Tract Infections Using Novel Light Scattering Methodology

Elizabeth Davaro¹, Andrew Tomaras², Robin Chamberland¹ and T. Scott Isbell¹


¹Department of Pathology, Saint Louis University School of Medicine and ²BacterioScan, St. Louis, MO

BACKGROUND

- Urinary tract infection (UTI) is common, and urine culture is one of the highest volume tests performed in clinical microbiology laboratories
- THERE IS OVERUTILIZATION OF URINE CULTURE DUE TO SUBOPTIMAL SCREENING TECHNOLOGY:
- Monopolizes laboratory resources
- As patients await results, there is unnecessary exposure to antibiotics
- $\circ \quad \text{Promotes bacterial antimicrobial resistance}$
- Increases risk for *Clostridium difficile* infection
- \circ $\;$ Adverse side effects of antibiotic medication
- A common approach is to screen samples using urinalysis (UA) to determine those that should proceed to culture
- THE OBJECTIVE OF THIS STUDY IS TO COMPARE A NOVEL UTI DETECTION METHOD (BacterioScan 216Dx UTI System) TO URINALYSIS FOR SCREENING URINE SAMPLES FOR REFLEX TO CULTURE
- Secondary objectives:
- Evaluate effectiveness of crystal violet to select for Gram negative organisms
- Determine if a higher dilution decreases the false positive rate without notably sacrificing sensitivity

METHODS

- Urine samples (n=194) were evaluated by UA, culture and BacterioScan 216Dx UTI System to detect the presence/absence of UTI pathogens
- 2 urine dilutions (1: 8 and 1: 200) were prepared in Tryptic Soy Broth (TSB) with and without 2 ug/mL of crystal violet followed by 190 minutes of optical assessment
- UTI detection was defined as growth in culture of one or two uropathogens at densities of ≥10,000 CFU/mL
- Reflex parameters for culture were compared to results from 216Dx to evaluate sensitivity and specificity

Graphs A-D: The BacterioScan 216Dx performs kinetic optical measurements over a three-hour period to detect changes in signal as a surrogate for microbial growth. The classification algorithm looks for indications of signal increase over the second half of the instrument run, as seen in **(C)** & **(D)**. It also monitors the overall turbidity of the sample and classifies highly turbid samples as positive even if no detectable positive growth is observed **(B)**, to eliminate the potential of positive samples being masked in a high optical background and reported as false negatives.

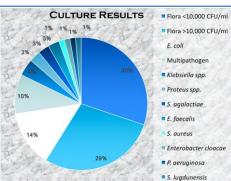

	1:8 No CV	1:8 w/CV	1:200 No CV	1:200 w/CV	UA
True Positives	30	23	27	19	26
True Negatives	134	141	148	163	118
False Positives	30	29	16	7	46
False Negative	0	1	2	4	4
Sum	194	194	193	193	194
Sensitivity	100.00%	95.83%	93.10%	82.61%	86.67%
Specificity	81.71%	82.94%	90.24%	95.88%	71.95%
PPV	50.00%	44.23%	62.79%	73.08%	36.11%
NPV	100.00%	99.30%	98.67%	97.60%	96.72%
Accuracy	84.54%	84.54%	90.67%	94.30%	74.23%
Incidence	15.46%	12.37%	15.03%	11.92%	15.46%
% Unnecessary Culture Identified	69.07%	72.68%	76.68%	84.46%	60.82%

Figure 1. The BacterioScan 216Dx instrument and its disposable multicuvettes (A). The 216Dx operates by measuring forward-angle laser light-scattering of suspended particles in liquid samples (B), which can be assessed kinetically as a gauge of microbial growth.

69% reduction in unnecessary culture; 9% IMPROVEMENT OVER UA SCREENING

KEY OBSERVATIONS

- BacterioScan method is more sensitive and specific for the identification of uropathogens than UA
- Screening patients for UTI requires a HIGH
 SENSITIVITY so a UTI is not missed and treatment is not delayed
- Screening with BacterioScan did not miss a UTI in our study (**ZERO FALSE NEGATIVES**)
- Screening with UA missed 4 individuals confirmed to have UTI by culture (4 False Negatives)
- BACTERIOSCAN IDENTIFIED A GREATER NUMBER OF URINES TRULY NEGATIVE FOR PRESENCE OF UROPATHOGENS (69.07% VS 60.82%)
- Screening with BacterioScan would further reduce unnecessary culture by 9% over UA.
- Crystal violet could select for Gram negative isolates, but lead to an increase in the false negative rate.
- Increasing the inoculation dilution factor decreased the false positive rate by approximately half but decreased the sensitivity (1:8 No CV vs 1:200 No CV)

CONCLUSION

In this study, the BacterioScan System proved to be A MORE EFFECTIVE METHOD OF SCREENING FOR URINARY TRACT INFECTIONS than traditional urinalysis.